Patrol Pics



Tyre swap.... (255/85r16)

Re: Tyre swap..balancing, etc... (255/85r16)

Postby Michael » 09 May 2016 07:14

265/75/16 vs 255/85/16 vs 285/75/16
Attachments
285R16IMG_4301.jpg
285R16IMG_4301.jpg (75.7 KiB) Viewed 471 times
"The Just shall live by Faith" Rom1:17

Check out my build here My Patrol
And my engine rebuild here mostly engine related stuff
User avatar
Michael
Moderator
Patrolman 1000+
Patrolman 1000+
 
Posts: 2308
Joined: 05 Mar 2014 14:39
Location: Centurion, PTA
Has thanked: 120 times
Been thanked: 199 times
Full Name: Michael
Nickname: Steyn
Home Town: Centurion
Current 4x4: Patrol GU 4.2 Turbo Diesel
Home Language: Afrikaans

Re: Tyre swap..balancing, etc... (255/85r16)

Postby Michael » 09 May 2016 07:16

285/75/16 vs 255/85/16
Attachments
85IMG_4292.jpg
85IMG_4292.jpg (96.93 KiB) Viewed 470 times
"The Just shall live by Faith" Rom1:17

Check out my build here My Patrol
And my engine rebuild here mostly engine related stuff
User avatar
Michael
Moderator
Patrolman 1000+
Patrolman 1000+
 
Posts: 2308
Joined: 05 Mar 2014 14:39
Location: Centurion, PTA
Has thanked: 120 times
Been thanked: 199 times
Full Name: Michael
Nickname: Steyn
Home Town: Centurion
Current 4x4: Patrol GU 4.2 Turbo Diesel
Home Language: Afrikaans

Re: Tyre swap..balancing, etc... (255/85r16)

Postby Wilkie » 09 May 2016 07:23

Yip stem saam met jou Michael 285/16 gaan jou 10jaar plus hou en om nou die regte band te koop vir die vlg 10jaar is dit n verskil van R8.33 /maand oor tien jaar /band :salute: :salute:
Wilkie
Patrolman 1000+
Patrolman 1000+
 
Posts: 1254
Joined: 24 Feb 2014 15:33
Has thanked: 49 times
Been thanked: 77 times
Full Name: Errol Wilken
Nickname: Wilkie
Home Town: Pretoria
Current 4x4: 1999 4.5 GRX Nissan Patrol
Rebuilding Nissan safari ldv
2004 BMW 3.0D X5
Home Language: Afrikaans

Re: Tyre swap..balancing, etc... (255/85r16)

Postby Herrie » 09 May 2016 07:34

Dankie vir die fotos Michael en watter tipe bande is daardie?
Herrie op Safari/Patrollie
1983 Safari
1999 Patrol 4500 GRX
User avatar
Herrie
Moderator
Patrolman 1000+
Patrolman 1000+
 
Posts: 3621
Joined: 08 Apr 2009 07:17
Location: Kempton Park
Has thanked: 69 times
Been thanked: 81 times
Full Name: Kobus Pienaar
Nickname: Herrie
Home Town: Kempton Park
Current 4x4: 1999 Patrol 4500e GRX
1983 Datsun Safari
Home Language: Afrikaans

Re: Tyre swap..balancing, etc... (255/85r16)

Postby SJC » 09 May 2016 07:41

User avatar
SJC
Patrolman 1000+
Patrolman 1000+
 
Posts: 2413
Joined: 23 Nov 2014 14:20
Has thanked: 59 times
Been thanked: 98 times
Full Name: SJC
Nickname: Fanus
Home Town: Lowveld
Current 4x4: 4.2TD Pickup & 4500 GRX
Home Language: Afrikaans/English

Re: Tyre swap..balancing, etc... (255/85r16)

Postby mattk » 09 May 2016 07:49

SJC, the link appears to be dysfunctional?
mattk
Senior Member
Senior Member
 
Posts: 60
Joined: 14 Mar 2016 16:09
Has thanked: 0 time
Been thanked: 2 times
Full Name: mattk
Nickname: mattk
Home Town: Centurion
Current 4x4: Patrol 4.8
Home Language: English

Re: Tyre swap..balancing, etc... (255/85r16)

Postby SJC » 09 May 2016 08:16

mattk wrote:SJC, the link appears to be dysfunctional?


Why Wide Tyres Don’t Help In Sand
Last updated 26/11/2015
On the surface it seems like a reasonable assumption that wide tyres or “fatties” would be better for driving in soft sand. It appears logical that a wide tyre wouldn’t dig in as much because it spreads its weight out more. However, practical experience tells us otherwise. In my experience commercial style four wheel drives with standard steel rims and factory skinny cheese cutter tyres perform just as well in sand as fancy 4WD vehicles with fat tyres. I found when I upgraded to a set of fatties in my Suzuki Sierra that it made no difference in soft sand. At correct tyre pressure, I’ve never seen a car with skinny tyres unable to complete an obstacle in sand that a vehicle with wide tyres was able to complete.
In my experience, in the vehicles I’ve owned and other vehicles I’ve driven and seen driven, I’ve NEVER noticed a difference in sand performance due to tyre dimensions. But I have always noticed a MASSIVE difference due to tyre pressure.
How can this be?
In sand, contact patch is what allows a vehicle to stay on the surface of the sand. Contact patch is the surface area of the tyre that makes contact with the ground. A larger contact patch distributes the force of the vehicle’s weight so that it does not dig into the sand. Contact patch is governed by vehicle weight, tyre construction and tyre pressure, not tyre dimensions. It’s simple physics. The contact patch is dictated by the pressure in the tyre and the force pushing the tyre down. Let me explain why.
It is important to understand that it is the air in the tyre that holds up the weight of the vehicle and not the tyre. The tyre is there to hold the air in place. If the air is doing the work of holding up the weight then the air pressure dictates the characteristics of the interface between the tyre and surface.
The unit for pressure is force per unit area. For example a pascal is one newton per square metre. A kilopascal (kPa) is 1000 newtons per square metre. Pressure can be calculated according to the formula:
Pressure = Force / Area
Manipulating this equation, we can get a formula for area, which we will use to calculate contact patch:
Area = Force / Pressure
So contact patch is dependent on force and pressure and has no regard for dimensions. What this means is at the same pressure, a narrower tyre will deform more than a wider tyre to achieve the same contact patch. Any sized tyre will deform just the right amount to achieve the contact patch described by the formula above. Lets substitute some values to see how it works.
We’ll assume a tyre is inflated to 40 psi. This translates to 275 kPa. Lets assume a weight on that tyre of 400 kg. To calculate force from weight, multiply by acceleration due to gravity (9.8m/s/s):
Force = 9.8 x 400 = 3920 N
Now we can calculate area:
Area = 3920 / 275000 = 0.0142 square meters or 142 square centimeters
So the contact patch of a tyre under these conditions is about 142 square centimeters. This is independent of tyre dimensions. If the tyre is say 20 cm wide then the length of the contact patch is about 7.1 cm (7.1 x 20 = 142). If the tyre is 30 cm wide then the length of the contact patch is 4.73 cm. What if we halve the pressure?
Area = 3920 / 137500 = 285 square centimeters
Halving the pressure doubles the contact patch. This occurs for a tyre of any dimensions.
Tyres aren’t perfectly flexible. These formulas assume a perfectly flexible tyre where the rigidity of the tyre does not contribute to holding the weight of the vehicle. In reality the tyre itself would contribute. For example the sidewalls of a tyre can support some weight and so would contribute to supporting the weight of a vehicle. This means the calculations are not very accurate. However the sidewall of any similarly rated and constructed tyre will contribute in a similar fashion. This means in a comparison between tyres (fat vs thin), the effect of sidewall mostly cancels out and the fact that contact patch is governed by pressure essentially holds true (but the relationship is no longer linear). This yields the following conclusion:
Two tyres of similar construction, of different dimensions, will have about the same contact patch when at equal pressure.
When you measure contact patch of a tyre and then measure it again at a lower pressure, the change in contact patch may not very accurately reflect what is predicted by the formula above. The contact patch will always increase less than what the formula predicts, since, at greater deflections, the tyre’s sidewall will contribute more to supporting the weight. Bending the sidewall more means more force must be applied. That extra force from the sidewalls means the contact patch grows less than what pressure alone would predict. More flexible tyres will conform closer to the ideal equation. More rigid tyres will deviate more, with contact patch growing much less than predicted by the pressure equation. This yields another important conclusion:
At equal tyre pressures, a tyre of greater rigidity will have a smaller contact patch than a more flexible tyre.
The above conclusion has nothing to do with tyre dimensions. It’s related to how flexible the tyre construction is. When analysing the effects of a particular parameter you must keep other parameters constant in order to isolate the effects of the parameter you are trying to analyse. This article is about wide tyre vs thin tyre, not rigid tyre vs flexible tyre (or bias tyre vs radial tyre, etc). The key point of this article is that, for similarly constructed tyres at the same pressure, tyre dimensions do not effect contact patch by much. All other things constant, a wide tyre will have a similar contact patch to a narrow tyre and, at the right pressure, both will perform well in sand.
A wider tyre will need to flex less to achieve the same footprint of a narrower tyre. This means a wider tyre may be able to run at a lower pressure when compared to a narrower tyre, as the narrow tyre will deform more and so increase the risk of pinching the tyre tread between the rim and the ground. In this case a wider tyre may offer a slight advantage since it can be run at lower pressure. However, for a typically weighted car with a tyre with reasonable profile, extreme minimum tyre pressure is determined by the minimum pressure required to keep the tyre bead seated (about 5psi) rather than the rim impacting the tyre. To recover a bogged vehicle, any tyre will allow pressure to be dropped very low, say around 5psi, unless the vehicle is particularly heavy or the tyre has a lower than typical profile. So a wide tyre may not offer any benefit.
What about the shape of the footprint? You could argue that a longer footprint afforded by a narrow tyre is better than a wider footprint in a wider tyre because a long footprint behaves more like a tracked vehicle (for example a bulldozer or tank) with the longest dimension in line with the direction of travel and thus affording more edges to bite into the surface to provide additional traction. Long contact patch or wider contact patch doesn’t matter much in my opinion – at the same pressure they afford the same area and apply the same force to the ground. There are other theories like a narrower tyre has stiffer sidewalls and thus doesn’t spread as much as a wider tyre, or a wider tyre creates a bigger “bow wave” and has to push more sand out the way so inhibits movement when compared to a narrow tyre which has lower frontal resistance. It’s all either unsubstantiated or simply doesn’t really make much difference compared to tyre pressure alone. In any case it’s pretty much irrelevant based on field observations. Any tyre at correct pressure will perform well in sand. In practical terms, contact patch is dictated by pressure and real world experience indicates that vehicles with skinny tyres perform just as well in sand as vehicles with wide tyres.
There are similar theories regarding best sand tyres in terms of tread pattern, sidewall construction, shape, etc. Some say less aggressive tread patterns are better because they don’t dig as much, providing better flotation. Same story for worn tyres being better than new. Sounds logical. This is substantiated by specialised sand tyres having very smooth tread patterns (looking like airplane tyres). But in the field I can’t say I’ve noticed much difference. I’ve never seen a tyre that doesn’t perform well in sand when at correct pressure. Practically all observed differences can be put down to differences in tyre pressures and vehicle loading. However one thing that does make a difference is tyre profile. Taller tyres have more room to deform, allowing lower pressures to be run. Low profile tyres don’t have much room to deform so run a greater risk of pinching the tyre between the rim and ground. However a low profile tyre still performs the same as a high profile tyre when both at the same pressure. The taller profile tyre is better only because it may allow lower pressures to be run.
Larger overall diameter is helpful in sand. As a tyre penetrates the surface of the sand (becomes bogged) some parts of the contact patch are no longer horizontal and the relationship between pressure and contact patch becomes distorted. Pressure dictates contact patch perpendicular to the direction of force. When penetrating the surface the tyre’s contact patch becomes larger than what the pressure dictates since some of the contact patch is no longer perpendicular to the weight of the vehicle. A larger diameter tyre will provide better flotation under these conditions. A good example are the huge rear wheels on tractors and their incredible ability to not get bogged. Tractors have very larger diameter tyres. They do not have wide tyres.
So for tyres and sand driving, tyre pressure dominates all other factors to the extent that other factors mostly don’t matter. There may be some other factors at play but they are dwarfed by the effect of pressure. Reduce pressure until you float on top. Any tyre will work.
User avatar
SJC
Patrolman 1000+
Patrolman 1000+
 
Posts: 2413
Joined: 23 Nov 2014 14:20
Has thanked: 59 times
Been thanked: 98 times
Full Name: SJC
Nickname: Fanus
Home Town: Lowveld
Current 4x4: 4.2TD Pickup & 4500 GRX
Home Language: Afrikaans/English

Re: Tyre swap..balancing, etc... (255/85r16)

Postby mattk » 09 May 2016 09:46

Interesting article, have heard similar before. Obviously, the same holds for mud. :thumbup:
mattk
Senior Member
Senior Member
 
Posts: 60
Joined: 14 Mar 2016 16:09
Has thanked: 0 time
Been thanked: 2 times
Full Name: mattk
Nickname: mattk
Home Town: Centurion
Current 4x4: Patrol 4.8
Home Language: English

Re: Tyre swap..balancing, etc... (255/85r16)

Postby SJC » 09 May 2016 11:35

Another informative write up: http://www.expeditionswest.com/research ... _rev1.html


Personally I don't think there is much to gain from fitting 285's over 255's other than looks, and maybe high speed cornering on tarmac. The footprint is too similar in size to really make much difference. Not worth an exstra R5k for a set of tyres. IMHO. :mytwocents:

I think that if not fitting 285/75r16's, then 255/85r16 is the next best thing. :thumbup:

255/85r16 = 33.07"
285/75r16 = 32.83"
265/75r16 = 31.6"
275/70 = 31.2"
User avatar
SJC
Patrolman 1000+
Patrolman 1000+
 
Posts: 2413
Joined: 23 Nov 2014 14:20
Has thanked: 59 times
Been thanked: 98 times
Full Name: SJC
Nickname: Fanus
Home Town: Lowveld
Current 4x4: 4.2TD Pickup & 4500 GRX
Home Language: Afrikaans/English

Re: Tyre swap..balancing, etc... (255/85r16)

Postby Peter Connan » 09 May 2016 12:46

Biggest difference will probably be in braking on tar, rather than cornering.

:mytwocents:
Mag ons ons kenniskry met lekkerkry aanhoukry.
User avatar
Peter Connan
Moderator
Patrolman 1000+
Patrolman 1000+
 
Posts: 4789
Joined: 10 Sep 2010 07:21
Location: Kempton Park
Has thanked: 159 times
Been thanked: 225 times
Full Name: Peter Connan
Nickname: Piet
Home Town: Kempton Park
Current 4x4: 1996 Patrol 4.2SGL
Home Language: Afrikaans

PreviousNext

Return to 14. Rims & Tyres

Who is online

Users browsing this forum: No registered users and 3 guests